...序言...
非隔离电源的AC-DC电路用于人体不会直接接触的地方,如LED灯内部。相比用变压器隔离过的二次电源,非隔离电源成本更低、设计更简单,但同时在雷电感应时,以及同一电源线有大功率电机等严重干扰时,应用电路更容易出错或者损坏,因此只有照明等很少数场合使用。
非隔离电源更主要的应用,是电路中需要用到多路直流电压的时候,进行低压DC的电压转换。电子产品通常的电源解决方案是,市电通过开关电源类产品后变换为直流电源,如12V,给模拟电路供电,同时在电路板上通过DC-DC电路,再转换为需要的另一种电压,如单片机用的5V。常见的产品,如家用的路由器、笔记本电脑、手机等等,都是采用这种方案。
这种方案中,降压操作在电流较小时可以用线性电源器件实现,如7805、LM1117等,在电流较大时,可用开关类方案,如34063、2596等。后者最常用的电路结构(拓扑)称为buck电路。
线性电路的效率要比开关状态的buck电路低很多,这意味着负载稍重就需要在线性元件上增加散热片。但是线性电路的成本要低于buck电路,设计上也极为简单。
负压也用buck结构的电路,但是多数buck芯片不直接支持负压,需要设计附加电路。可以直接输出负电压的芯片如TI的TPS54060。
升压电路最常用的是boost电路,如TI的TPS61088。
另有可以升降压自动切换的电路称为buck-boost,比如9V-18V输入都可以输出12V。
组图:1117,2596,54060,TPS61088
如前所说,buck、boost、buck-boost三种电路都工作在高频开关状态。现在主流芯片的开关频率在几百KHz到1MHz以上。非隔离的开关电路是转换效率最高的一类,通常在85%-95%左右。
形形色色的DC-DC电路结构有很多,上述三种是应用最广泛的,均有国际大厂的集成芯片支持,网上很容易找到典型应用电路。
非隔离电路还有一个重要应用场景是电池供电的系统。电池电压都是随电量有所变化,而且几乎没有5V、3.3V之类恰好合适的电压,所以DC-DC变换必不可少。例如国产的TP5600系列是专用的锂电池充电、保护、并输出5V的芯片,设计为用于移动电源,很适合用于手持设备的电池管理。
图:TP5602
相对于隔离电源,非隔离电源较简单,没有专业大厂做成品,一般都是研发者自己做在应用电路的电路板上。
隔离电源
隔离电源的关键器件是变压器,用于阻断初级与次级间的电气接触(通过交变磁场将能量从初级耦合到次级)。经过变压器后的次级(如果电压不高),对人体就是安全的。再经过整流滤波等,就可以用于手机、电脑,以及你设计的应用电路。
隔离电源大体又分为两类,一类用工频变压器实现,为开环结构,即不依靠反馈,而是把变压器的输出电压整流滤波后,通过线性电源器件(如7805、1117等)得到最终需要的稳定电压。我们将这一方案简称为线性电源(这是一个不严谨的叫法,只是为了简便。也有叫变压器方案的)。另一类用高频变压器,使用反馈电路得到所需电压。我们称之为开关电源类产品。
线性电源
线性电源最常见的应用是微功率电路,例如一两瓦以内的功率消耗。在这个应用场景中,线性电源比开关电源模块方案,重量只增加几倍,体积也只大几倍,都在通常仪器设备可接受的范围内,但批量价格要低很多。
在可靠性方面,常见说法是线性电源因为元件数量少得多,必然可靠性更高,但是这是有前提条件的。工频变压器输出的电压随负载变化很大,要求整流滤波后使用一个线性元件(如7805)来稳定电压。为保证在市电电压最低、负载最大时仍能输出足够电压,变压器的额定输出电压需要高出所需电压很多,这样会在线性元件上消耗较大的功率。这意味着线性元件可能长时间工作在高温状态。如果要体现可靠性的优势,就需要在设计中采用足够大的散热器,并且变压器的额定输出电压在够用的前提下尽量不要太高。
在几瓦以上的应用中,需要很大的工频变压器,可能其重量比所有其他东西加起来还要重很多,体积也可能占整体的一大半,加上同样大得不成样子的线性电源的散热器,多数情况下并不实用。(成品线性元件如7805类的无法支持这么大的电流,也是因为需求很少。但是可以用三极管和电压基准来实现)
另一个需要考虑的角度是加工工时。相比模块电源的四脚插针焊接,工频变压器方案需要的焊接安装工作量更大,而且有些部分难以实现自动化,包括变压器螺丝固定、引线压端子、接线或焊线,散热片涂抹硅脂、加绝缘垫片、螺丝固定。
图:散热片工艺要求
小型工频变压器有的输入输出是插针,可以焊在电路板上,省去了焊线或压端子的工序,但由于变压器重量较大,在跌落或震动情况下更容易出现脱焊等失效情形。
开关电源
微电子设备中,主要采用开关电源类产品。
开关电源的大体工作流程如下图:AC220V首先经过EMC滤波,然后经过桥式整流,由电解电容滤波,形成高压直流电(约DC310V)。变压器在开关元件的作用下,周期性地导通关断,从而在次级耦合成周期性的电压。该电压经整流滤波后,形成输出电压。输出电压再与电压基准进行比较产生反馈信号,经光耦隔离后,用来控制开关元件的导通情况(通常是占空比)。
图:开关电源电路结构
开关电源这一工作原理,在看上去差别很大的诸多产品中都有应用。常见的包括台式电脑内的电源,笔记本电脑的电源适配器,手机充电器,我们常说的开关电源,以及几厘米大小、板载式的电源模块,高端LED灯的电源,其实都是同一类东西。
开关类的电源之所以得到广泛应用,是因为其有着明确的优势。
首先是体积和重量。前面已经提过,在小功率时已经有成倍的差异。在中大功率时,工频变压器加线性电源的方案只在很少的特殊场合中使用,如部分高端音响、高精度仪器等。我有一台三百瓦的音频功放,其变压器比20斤的一袋大米还重。
板载式的电源模块作为开关电源类中的一个分支,更进一步追求小尺寸,同时插针封装、电路板焊接更进一步节约加工工序,省时且经济。
开关电源类的另外一个优势是高效率。工频变压器方案中,由于线性元件的存在,使得效率大为降低,典型情况下,只有60%左右。而在开关类电源产品中,以我们的产品为例,效率最低的5W输出产品其效率也有72%以上。这种情况发生在输出功率最小的产品上,因为电源本身总要有一定损耗,输出功率小,损耗占的比重就高。10W产品的效率就达80以上%,15W则为85%左右。(亨乾电子主打板载式小体积产品,如果换用更大尺寸的变压器,比如有市售开关电源那样的空间,效率可以做有更进一步的提升)
高效率的意义在于低发热,而低发热意味着长寿命和高可靠性。这一点不但对电源本身有意义,而且相当多的情况下,电源和应用电路是安排在同一个机壳中的,尤其是小型采集测控等系统,空间有限,内部温度很容易升高。发热量少对整个系统的寿命和可靠性,都有很大意义。
开关类电源之所以可以做到体积重量很小,关键的一点是开关频率比工频高很多。市电输入的开关电源工作频率一般在几十KHz到一百多KHz,输入电压低(二三十伏以下)的一般工作在几百KHz到上MHz。
所有的变压器一定要在电压电流变化的状态下才能工作。工频变压器利用市电的交流变化来工作,而开关电源用开关元件(如MOSFET、IGBT等),由专用的电路来控制该开关元件的导通和关断,这样就可以以很高的频率工作。频率提高,所需的变压器、滤波电感电容,都可以采用更小值更小体积的,因此整体的重量和尺寸都小得多。
开关频率并不能一直提高,原因在于MOSFET等开关器件有不可避免的开关损耗,每一次开关都会产生一次损耗,这样频率越高,损耗越大、效率越低;变压器的涡流损耗也随频率增加;导线(包括变压器绕组)也有涡流损耗。当这些额外增加的损耗成为主要部分时,再继续提高频率就会开始得不偿失。
当然,相比线性电源,开关电源也有不足。如高端音响和仪器中之所以用线性电源,是因为开关电源的工作机制--开关过程--决定了其不可避免地产生一定的电磁噪声。
在大多数应用中,这个噪声远不是木桶的最短板,但是也有些场合例外。为了确定开关电源的噪声到底对应用电路有多大影响,一个很简单的方法就是对比。当出现噪声问题时,根据需要,用一个一线大厂的产品,如Vicor,或者用一个线性电源暂时替代原来的开关电源,即可确定是否电源噪声过大。关于电源噪声的问题,将在其它文章中深入探讨。
另外如前所述,在微功率场合,线性电源的成本更低。
开关电源类产品的另一个问题是具有一定的技术难度,如电磁噪声,磁路设计,环路稳定等。这些问题,使得专业的开关电源类厂家有了存在的价值,但同时也使得普通中小电子企业不必自己深究电源问题。例如亨乾电子的电源模块,插针封装,焊在电路板上,串入保险丝即可,连输出电容都不一定需要。研发人员可以把精力集中在应用电路上,省时省力、加快产品上市速度。
简单总结
·变压器加线性元件的方案适合AC-DC微功率场合,电路简单,成本低;局限是只适用于微功率场合。
·开关电源类AC-DC适合绝大多数场合,成本-性能-尺寸重量均衡,技术复杂但同时有专门厂家生产成品,可以加快产品上市速度。
·其中电源模块体积更小,适合小尺寸设备仪器,焊装方便,适合批量生产,但价格稍高。
·非隔离DC-DC主要用于产生第二路、第三路电压,也用于电池供电电路,效率最高,成本中等。设计调试难度不算高,基本没有大公司成品销售,需要自己做在电路板上。
本文介绍了单片机、嵌入式领域常见的电源方案并做了比较,下一篇,将对使用最为广泛的开关类电源产品的参数和选用做详细讲解。